Keeping your data safe from prying
eyes

Sam Barker
Principal Software Engineer @ Red Hat

Why are we worried about it? GDPR

“For especially severe violations, ..., the fine framework can be
up to 20 million euros, or ..., up to 4 % of their total global
turnover of the preceding fiscal year, whichever is higher.']

[1] https://adpr-info.eu/issues/fines-penalties/

https://gdpr-info.eu/issues/fines-penalties/#:~:text=For%20especially%20severe%20violations%2C%20listed,fiscal%20year%2C%20whichever%20is%20higher.

Why are we worried about it? SEC

“personal liability for CISOs. Cases like Uber, where CSO Joe Sullivan faced
personal charges after a data breach, and SolarWinds, where CISO Timothy
Brown encountered financial penalties, serve as stark cautionary tales. “°]

[3] https://www.safe.security/resources/blog/ciso-personal-liability/

https://www.safe.security/resources/blog/ciso-personal-liability/

What exactly are we worried about
here?

Intercepting client traffic

App Hello World! Broker

i

TLS to the rescue

App

(_ 0x28764654723432

0,0,

reated by Luis Pr:
from Noun Project

[:] Hello World!

S, |
>

Broker

Intercepting inter broker traffic

LS} -
App =| Hello World! > Broker 1
.

[Broker 2 }

iP1IOM O7713H

TLS saves the day again

 Ox74355944703

Stolen disks/backups

Disk encryption

6(9'7485'73&9875

\
{ App } E Hello World! >[Eroker J
——-— 7
v

=
O .?.‘i‘f.‘fff?.ﬁ.\ Q /

Created by Juicy Fish
from Noun Project

File system access??

Heap Dumps??

[App J IE Hello World!

2)

Created by Juicy Fi
from Noun Project

A threat model

Existing tools are good!
But can't do EVERYTHING!
We are specifically thinking about

e Nosy systems administrators
e Passive snooping
e Insider Threats

aVailaBil?ty

In CIA Triad terms we are;

Providing confidentiality
Improving Integrity
Leaving availability unchanged.

How do we defend against this?

Fix it in the clients?

Advantages: Challenges:
v Already available! X Notall clients support the same
levels of sophistication and
v Ensures brokers never see plain robustness
text X Every team needs to implement
encryption separately and
correctly!
X Wide distribution of key material
X Can't address third party

applications

BUT that means every client

ALL THE GLIENTS!
&

imgfiip.com -

Fix it in the Broker?

Advantages: Challenges:

v Doitonce, doitright! X We don't have the hooks

v Limited distribution of key X Scaling CPU without scaling I/O
material

X Do we trust our broker host with
v/ Limited set of languages and our sensitive material?

crypto libraries to worry about X Hosted brokers? We can't add

code there

Fix it in a proxy?

Advantages: Challenges:

v Ensures brokers never see plain X

Another tier to run, maintain and
text

manage.

v Doitonce, doitright! .
d X Introduces additional network

v Limited distribution of key material hops

v Limited set of languages and

o X Using TLS certificates for
crypto libraries to worry about

Authentication is problematic
v Centralised configuration

v/ Transparent to all clients

Encrypt it in the middle: A proxy!

D =

7 OxU654651232u2
Broke ‘ _,_:\7 _7{/‘_‘@«‘
Y,

The details: Envelope Encryption

Kafka Records

b

"timestamp": 123654,
"offset": null,
"key": {"accountld": "sam-216546546"},
"value": {"action": "credit", "amount": 1000.07},
"headers": [

{llkeyll: "h1", "Value": "V1"},

{llkeyll: Ilh2l|, "Value": "V2"},

{llkeyll: "hN", "Value": IIVNll}
]

We can't encrypt

X Timestamps

X Offsets

We CAN encrypt:

v Everything else &%

Encrypt Everything!!

The simplest thing that could work ° UseaKey Management System

(KMS) to encrypt records

e KMS has to keep the Key
FOREVER*

e Keys have a finite cryptographic
capacity

* at least as long as Kafka retention

Envelope encryption: Producing

What actually works .
- . e Generates a dedicated Data

Encryption Key (DEK) for
encrypting messages

e Include the encrypted DEK with
the cipher text sent to the

: DEK Cache

: @ broker
;--..‘g.“s..f.l..i.er.‘.t..-.-'; e Including DEK ensures that the
?},&& \ Dgy message is decryptable later
69'09}; /.
o
‘\\%/ KMS

Envelope encryption: Consuming

What actually works

e Read Encrypted DEK from
envelope

e KMS decrypts the DEK

e Use the decrypted DEK to
decrypt the message.

! DEK Cache

3

i KMS Client }

The Envelope

{
"timestamp": 123654, DEK
"offsetts Qullpeseseascsoscnseni,,, T
EmESET e .'.. ...’."s.
"key": {"accountId": "sam-2165465U46"}, e ‘ ‘ot
o "value": {"action": "credit", "amount": 1000.0}, °. et R
J "headers": S peceosss ». “o. sasemeuases »
'.. [{"key“: IlhllI' “value": "va'Ll"}, '. ’... encrypt '.,‘ 0x23729”‘87398”79832”‘73 cee
.... {Ilkeyll: IIh2II' 'IValue": llvalzll}' ...'- :
K g {"key": "hN", "yalue": llva'LN"}] ‘....‘. '\. .." KEK ID :.
} 0 mcp e RS :
AAD.. v
EDEK. s, e N
{ -~ L L s
"timestamp": 123654, ‘-~_. 52" Yo
“offsetl: null, . . . ccesseeveweuss o s enve'[_ope -
" mkey": ${HMAC}, T
¢ "value": 0x34324545564654662473 ... , . Treer
‘., "headers": [{"key": "encryptedRecord", "value": "v_1"}] .°<--.... E
e AT e v

What we learnt along the way

Encrypting Record Keys

Keys are often sensitive so we want to secure them.

However they are critical to Kafka operation:
1. Partitioning
2. Compacted topics

e®ccccccccccscssscaccacccccccssssssscccncccnoonn, R R R R XL R

key = {userId = 789456} :

value = { ... }

key = Ox545af45689797
value = ex3490283u9@2...§

...

The problem with message keys

Time

Time

Compact topic

~
key = X key =Y key =Z key = X
value = v1 value =v2 value =v3 value = v4
_ J
e)
key = X key =Y key =Z key = X key =Y
value = v1 value = v2 value =v3 value = v4 value = null
_ J
With unstable keys
e)
key = 0x34 key = 0x62 key = 0x87 key = 0x15
value = 0x... value = 0x... value = 0x... value = 0x...
_ J
~
key 0x34 key = 0x62 key = 0x87 key = 0x15 key = 0x67
value = 0x... value = 0x... value = 0x... value = 0x... value = 0x...

Semantic Encryption

R i
Created by Template S eSSl nERRSS SR e RS SRS SN e
from Noun Project . go®®

. Key_1 R e e e AN .
“Identical plaintexts | :
e e Sane ey . OxU65U86231ed ...

Stabilising the record key

Produce
{ secret KA {
"timestamp": 123654, T "timestamp": 123654,
"offset": nu'l_.L > '.' HMAC 0._:....~ "o-F-Fset"' null
““key": {"accountId": "sam-2165465U6"} ,._ -~ *o > o T »:° “key": @xd5fr2q3”q23432”'.
.................. ~ Y == e’ '--..,,.__.._.__..._.--"
...................... . 2 .
. i o . = . . e e ===>>"value": 0x3U324545564654662473 ... ,
value": {"action": "credit", "amount": 1000.0}," S L= "headers": [{"key": "encryptedRecord”, "value": "v_1"}]
"headers": N Le== }
[{Ilkeyll: Ilhlll' "value“: llva'Llll}’ S
{"[»(Ey": "h2“, uva'l_ueu: "val2"},
{"key" : nthl' "Va".ue": "ValN"}]
}
Fetch
{) {
"timestamp": 123654, e SR SN "timestamp": 123654,
noff ". S - g " T
.,.?---S-e-t""n'u}}"'"“ 4, "\/\ Extract 2 <-_(\/ Decrypt s .:ff.s-ﬁf.._.quL
2" "key": {"accountId": "sam-216546546"}, Ry %, e /\T\ ;l‘.’é_" ¢
"value": {"action": "credit", "amount": 1000.0}, & >":/a1ue" . Ox3U32U5U556U651662U73 = b
"headers": < : —..’.’,/
[{“key“ : "hllll "Value“ : "Vallu}‘ n Lk -II T _ll_ . ; - I_l _____ - n n n n n
{"key": "h2", "value": "val2"}, headers": [{"key": "encryptedRecord", "value": "v_1"}]
{ukeyu . IIhNII' "Value": llvalNll}] }

Stable keys!

With stable keys
key = 0x34 key = 0x62 key = 0x87 key = 0x34
value = 0x... value = 0x... value = 0x... value = 0x...
Time
key = 0x34 key = 0x62 key = 0x87 key = 0x34 key = 0x62
v value = 0x... value = 0x... value = 0x... value = 0x... value = 0x...

Compacting...

Time

Time

Compact topic

key = X key =Y key =Z key =X
value = vi value = v2 value = v3 value = v4
tombstone
‘\
]
key = X key =Y key =Z key = X key =Y i
value = vi value = v2 value = v3 value = v4 value = null 4
Simply encrypt
> I
key = 0x34 key = 0x62 key = 0x87 key = 0x34
value = 0x... value = 0x... value = 0x... value = 0x...
N A not a tombstone
e ~ 3
key = 0x34 key = 0x62 key = Ox87 key = 0x34 key = Ox62 g
value = 0x... value = 0x... value = 0x... value = 0x... value = 0x... | &
\ J

Null detection

key = 0x34 key = 0x62 key = 0x87 key = 0x34
value = 0x... value = 0x... value = 0x... value = 0x...
Time
tombstone
‘\
key = Ox34 key = 0x62 key = Ox87 key = Ox34 key = Ox62 e /

v value = 0x... value = 0x... value = 0x... value = 0x... value = null =

Overloading the KMS

The simplest thing that could work
e KMS has to scale to Kafka

message rates...
e That costs a lot of:
o Latency
o Cost per callin the cloud

Key Rotation

Keys have finite encryption Each instance gets its own

. capacity in: key
e Bytes
i o Time Instances use KMS to

generate new DEKSs as
required.

We don't rotate persisted
data

Kroxylicious, the snappy open source proxy for

Apache Kafka®

Kafka Protocol aware proxy

Transparent to clients and brokers
We have a record encryption filter!

Fully open source: Apache Software
License version 2.0

Source code:
gdithub.com/kroxvlicious/kroxvlicious/

https://github.com/kroxylicious/kroxylicious/

Could kroxylicious work for you? Come
and help us make that happen!

Questions? Comments? Places you'd like to deploy?

A
Thank you for your time ﬁiﬁ

‘ . www.kroxylicious.io
All the Icons are Creative Commons and sourced from the Noun Project

https://thenounproject.com/

Abstract

Description

How much can you trust your Kafka cluster? Does it have the right access or audit controls? What about at the level of the file system? Data
privacy and integrity is a crucial issue for many deployments for reasons of customer confidentiality, corporate security, national laws and
regulations or just applying industry best practices.

In this talk we'll explore the measures Apache Kafka takes to protect your cluster and your data, and why it isn't always enough. We'll take a look at
some practical approaches to achieving encryption-at-rest and their risks and benefits, and how proxy servers can be a useful tool for addressing
these problems. Lastly, exploring my team's journey to build a fully open source Layer 7 proxy for Apache Kafka, and what we've learned so far
about proxying the Kafka protocol.

Attendees will gain a deeper understanding of the potential impacts of improperly secured data and the flow impacts that can have for data

integrity, as well as the techniques and challenges of achieving at-rest security in Apache Kafka. They will leave with the knowledge they need to
protect their own data's confidentiality, integrity, and availability.

Session: 45m with 10-15 or Q&A

